

ER
D

C
/IT

L
M

P-
06

-1

System-Wide Water Resources Program

Mesh-Independent Methods
for Agent Movement
Jing-Ru C. Cheng February 2006

In
fo

rm
at

io
n

Te
ch

no
lo

gy
 L

ab
or

at
or

y

Approved for public release; distribution is unlimited.

System-Wide Water
Resources Program

ERDC/ITL MP-06-1
February 2006

Mesh-Independent Methods
for Agent Movement
Jing-Ru C. Cheng

Information Technology Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
 Washington, DC 20314-1000

ABSTRACT: Efficient and accurate methods are needed to move agents (particles with behavior rules) through
their environments. To support such applications, this paper presents a compact software architecture that can be
used to interface parallel particle tracking software to computational mesh management systems. The in-element
particle tracking framework supported by this software architecture is presented in detail. This framework supports
most particle tracking applications. The use of this parallel software architecture is illustrated through the implemen-
tation of two differential equation solvers, the forward Euler method and an implicit trapezoidal method, on a dis-
tributed, unstructured, computational mesh. A design goal of this software effort has been to interface to software
libraries such as Scalable Unstructured Mesh Algorithms and Applications (SUMAA3d) in addition to application
codes (e.g., FEMWATER). This goal is achieved through a software architecture that specifies a lightweight func-
tional interface that maintains the full functionality required by particle-mesh methods. The use of this approach in
parallel programming environments written in C and Fortran is demonstrated.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN TO THE ORIGINATOR.

 iii

Contents

Preface .. iv

1—Introduction ..1

2—The In-Element Particle Tracking Method...1

2.1 The forward Euler method (Method 1) ...4
2.1.1 The determination of the intersection edge/face
 for an element ..4
2.1.2 Calculation of the particle destination6

2.2 The implicit trapezoidal method (Method 2) 8
2.2.1 The determination of the intersection edge/face
 for an element ..8
2.2.2 Calculation of the particle destination8

3—The Parallel In-Element Framework ..9

4—A Particle-Mesh API ..10

5—Experimental Results..14

6—Conclusion and Future Work ...18

Acknowledgments ..19

References ..19

SF 298

iv

Preface

 The tests described and the resulting data presented herein, unless otherwise
noted, were obtained from research conducted under the sponsorship of the U.S.
Army Engineer Districts Walla Walla and Portland and the System-Wide Water
Resources Program (SWWRP), a U.S. Army Corps of Engineers research and
development initiative. Dr. Steven L. Ashby is the program manager for
SWWRP. This work was also supported in part by a grant of computer time from
the Department of Defense High Performance Computing Modernization
Program at the U.S. Army Engineer Research and Development Center (ERDC)
Major Shared Resource Center (MSRC), Information Technology Laboratory
(ITL).

 This report was prepared by Dr. Jing-Ru C. Cheng, ERDC MSRC, under the
supervision of John E. West, Director, ERDC MSRC; Dr. Deborah F. Dent,
Deputy Director, ITL; and Dr. Jeffery P. Holland, Director, ITL. It was
previously published as a journal article in Parallel Algorithms and Applications,
Vol. 19 (2-3) 2004, pp. 145-161.

 At the time of publication of this report, Dr. James R. Houston was Director
of ERDC, and COL James R. Rowan was Commander and Executive Director.

1

1 Introduction

Agents might represent plants or animals in ecosystems, vehicles in traffic, peo-
ple in crowds, or autonomous characters in animation and games. Agent-based
simulation has been used effectively in ecology, where it is often called individual
based modeling (IBM)[1]. Some individual based models are spatially explicit
meaning that individuals are associated with a location in geometrical space.
Some spatially explicit individual based models also permit explicit mobility,
where individuals can move around their environment. This paper presents a
portable software architecture for mesh independent parallel particle tracking al-
gorithms, which is central to agent movement in the spatially explicit individual
base models on continuous space.

Particle tracking methods occur in a variety of scientific and engineering ap-
plications. Such applications are often large-scale and involve the use of high-
performance, parallel computing systems for their solution. For such applications
the development of scalable particle tracking algorithms and software that can be
effectively integrated into existing parallel programming environments is essen-
tial. To address these needs, the research is motivated by two main objectives:
(1) the development of scalable parallel in-element particle tracking algorithms to
efficiently and accurately solve scientific problems by tracking particle movement
on two- and three-dimensional unstructured meshes, and (2) the development of
a portable software interface to enable a variety of applications requiring particle
tracking methods to speed up the development of high-quality parallel application
codes.

The remainder of this paper is organized as follows. Section 2 and Section 3
describe the in-element particle tracking method and the associated parallel im-
plementation, respectively. Section 4 presents the software architecture and an
Application Programming Interface (API). In Section 5, the results of interfac-
ing with the SUMAA3d [2] parallel programming environment and the parallel
FEMWATER [3] application code are presented. Section 6 summarizes these
results and discusses planned future work.

2 The In-Element Particle Tracking Method

The particle tracking methods used in the applications mentioned above can be
expressed in an algorithmic and software framework called in-element particle
tracking. The advantage of this framework is that only local, or in-element,
simulation data are required to compute the trajectories of particles at each
time-step. Thus, in a parallel computing environment, assigning particles to
computational elements that contain them allows for a significant decrease in
required interprocessor communication [4]. In this section, the implementation
details required for the in-element method is considered; in the next section, the
overall parallel algorithm is presented.

The discussion of the in-element particle tracking algorithms in the follow-
ing sections is simplified by considering massless particles—that is, particles that
exactly follow streamlines determined by the local velocity field. However, ex-
tending these algorithms to particles with mass on which forces act is a simple

2 2 THE IN-ELEMENT PARTICLE TRACKING METHOD

matter. The time-dependent movement of these massless particles is defined by
solving the equation

dx(t)
dt

= v(x(t), t) , (1)

where v is the particle velocity at the particle location x(t) and at time t. In
general, the particle location can be obtained at time t +4t by integrating (1)

x(t +4t) = x(t) +
∫ t+4t

t
v(x(τ), τ)dτ . (2)

The integral term in (2) must be evaluated numerically because the velocity
data are available only on discrete mesh points in most engineering and scientific
applications.

Lane [5] summarized the following fundamental issues in particle tracking ac-
cording to Buning [6, 7] and Post and van Walsum [8]: (1) physical versus com-
putational space tracking, (2) element search, (3) time-step size selection, and
(4) velocity interpolation. The in-element particle tracking technique was de-
veloped by Cheng et al. [9] using physical space tracking to avoid accuracy loss
from the transformation scheme, element-by-element tracking to circumvent the
bottleneck of element searching, and subelement tracking to resolve the time-step
size selection problem to increase the resolution of velocity field. Additionally,
velocities at both current and previous times may be considered in velocity in-
terpolation depending on which ordinary differential equation (ODE) integration
scheme is adopted.

The in-element particle tracking method [9] is an algorithm to track particles
element by element through the computational mesh. Algorithm 1 approximates
the tracking velocity Vtrack by averaging the velocities at the current and next
time-step, i.e., V(t) and V(t + 4t), for forward tracking. This approximation
results in a significant computational simplification because the element and the
edge/face that the particle will intersect can be determined prior to the destina-
tion computation. However, the accuracy resulting from velocity interpolation
in time may be severely degraded in the case of unsteady flow. In this case, the
velocities would have to be interpolated along the particle trajectory. To improve
the accuracy of integration, in Algorithm 2 the particle tracking is performed in
subelements that are generated by regularly refining the element as the particle
passes through it. Obviously, the accuracy is dependent on the order of interpo-
lation. The refinement of regular elements is an approach to increase the order of
interpolation scheme. The subelement tracking algorithm (Algorithm 3) includes
the determination of the neighbor subelement for the current tracking, the seek-
ing of the edge/face that the particle will lie on, the computation of the ending
location on that edge/face, and the calculation of the time spent in this tracking.
This algorithm stops and then restarts at each element boundary. A detailed
description of this algorithm can be found in [9].

To improve the accuracy of particle tracking in unsteady flow fields, one can-
not determine, a priori, Vtrack. Instead, both V(t) and V(t+4t) are considered
when the neighbor element/subelement needs to be determined. Other items

3

computed are the residual time, tr, the ending location, and velocity of the par-
ticle. Appendix B in [4] provides insight for the mathematical formulation of the
in-element particle tracking under this circumstance.

Algorithm 1 The time-marching loop for in-element particle tracking

Foreach t ≤ tmax do
Read/Compute V(x, t +4t)
Vtrack(x, t +4t) = 1

2 [V(x, t) + V(x, t +4t)]
Track particles using Vtrack(x, t +4t)
Update particle data
t ← t +4t

Endfor

Algorithm 2 The in-element particle tracking algorithm

Let P0 be the set of particles
Set the residual time tr to the time-step size 4t
n ← ‖P0‖
Foreach (p ∈ P0) do

Determine the neighbor element M that the particle will pass
through based on velocity rule with Vtrack(x, t +4t)
While (tr > 0) do

Refine the element M to the prescribed number of subelements
Track p subelement by subelement until time is exhausted

or until the element boundary is intersected
Compute tr, velocity, and identify the possible neighbor

element M for next tracking
if tr = 0 do

Update the location of p at current time
Endif

Endwhile
Endfor

Algorithm 3 The subelement tracking algorithm

Determine the neighbor subelement m that the particle will
pass through based on velocity rule with Vtrack(x, t +4t)

Determine the edge/face ` of the subelement m that the particle
will intersect

Compute the location on the edge/face `
Calculate the time spent in this tracking
Return the residual time tr and the location of particle p

Figure 1 demonstrates how the algorithms work. From this figure, one can see
that the in-element tracking technique computes a path through elements and
subelements. In this example, the particle starts from vertex P, passes through
elements 2 and 3, and stops at the point Q in element 4. Seven particle tracking

4 2 THE IN-ELEMENT PARTICLE TRACKING METHOD

P

Q

1
1

4

2

3

5

6

7

8

1 element 1

2

3
4

5

6

7

FIGURE 1: An example of in-element particle tracking

paths are shown: three in element 2, three in element 3, and one in element 4.
One can observe that elements 1 as well as 5 through 8 are not involved in the
tracking process; therefore, refining these elements is not necessary.

Two ODE solvers have been implemented to track particles in subelements:
forward Euler and an implicit trapezoidal method. Based on Algorithm 3, the
forward Euler and implicit trapezoidal methods are implemented using the ap-
proximated tracking velocity Vtrack(x, t +4t). This means a constant velocity
Vtrack(x, t+4t) is considered for tracking during the period 4t. The mathemat-
ical formulation (see Appendix B in [4]) has been derived based on the velocities
V(x, t) and V(x, t +4t) to determine the face/edge that the particle will move
onto, to compute the location on that face/edge, and to calculate the time spent
in this tracking. The following subsections detail the mathematical formulation
implemented in the software.

2.1 The forward Euler method (Method 1)

The procedure to determine the neighbor subelement that the particle will pass
through can be found in the Appendix B of [4]. Once the subelement has been
determined into which the particle will move, the same concept is implemented
to determine the edge/face that the particle will intersect.

2.1.1 The determination of the intersection edge/face for an element

Provided first here is a formulation for a two-dimensional (2-D) element. Because
the particle p is always on the edge 0-1 after renumbering the vertex number on
the element (see Figure 2), a decision function D is defined as

D = k̂ · (Lp2 ×Vtrackp) , (3)

2.1 The forward Euler method (Method 1) 5

where the element is assumed to be in the x-y plane and k̂ is the unit vector in
the z-direction. From Figure 2, one can conclude that (1) edge 0-2 is the target
edge if D > 0, (2) edge 1-2 is the target edge if D < 0, and (3) the particle will
move along the line p-2 if D = 0.

0

1

2

p
track

VtrackV

L

p2

p2

p2

2

p

VtrackV

Lp2

D = L x Vp2

track

track

Below the line : D < 0

Above the line : D > 0

On the line :
D = 0

FIGURE 2: In a 2-D triangular subelement, the relationship of Lp2 and Vtrack

determines the edge/face onto which the particle will move

p2

p2

2

3

Face: a-b-c
4-3-2
4-1-3
4-2-1
1-2-3

1

track

track

V

V

p

4 p2

p2

c (2)

b (3) a (4)

track

track

V

V

p

inspected plane: p-A-B
p-b-a
p-c-b
p-a-c

FIGURE 3: Left: In the subelement tracking kernel, the vertex numbers in
a tetrahedral element are numbered as the sketch. Right: Three planes are
inspected when a face is taken into account

The formulation for the 3-D element is as follows. On the left of Figure 3, a
tetrahedral element is used for the demonstration and the definition of four faces
(each of them is mapped to a-b-c) as listed in the figure. For example, for the
case on the right side of Figure 3, the general face a-b-c would be the specific
4-3-2 face of the element. The following procedure is executed face-by-face to
determine the face onto which the particle will move. For the face 4-3-2, three
planes (each of them is mapped to p-A-B) are inspected to determine if this is
the face for further computation (for particle destination), as depicted in Figure
3. On each plane p-A-B, the quantity D, as shown in Figure 4, is computed as
follows.

D = Vtrackp · (LpA × LpB) (4)

From Figure 4, the conclusion is that (1) the particle will move above the plane
p-A-B if D > 0, (2) the particle will move below the plane if D < 0, and (3) the
particle will move on the plane if D = 0.

6 2 THE IN-ELEMENT PARTICLE TRACKING METHOD

p2

p2

D = V (L x L)

B

track

track

V

V

pB

On the plane:
D = 0

Above the plane:
D > 0
Above the plane:
D > 0

Below the
plane: D < 0

track

p

pA

A

FIGURE 4: The determination of the tracking direction of a particle in a 3-D
space

2.1.2 Calculation of the particle destination

For a 2-D particle tracking path, the target edge is a line segment denoted by
1-2 (see Figure 5). The coordinates of vertices 1, 2, and of the particle p are
represented by a tuple (x, y) with subscripts 1, 2, and p, respectively. From
Figure 5, the interpolation parameter ξ ∈ [0, 1] is used to locate the particle
destination q. Based on the following equation,

‖xq − xp‖
‖Vtrackp‖

=
xq − xp

Vx
(5)

and the linear interpolation of q written as (7), (6) can then be obtained as a
function of ξ.

f(ξ) = (ξ(x1 − x2) + x2 − xp) ‖Vtrackp‖ − V xtrackp ·
√

ξ2L2
21 + 2ξL21 · Lp2 + L2

p2

= 0 . (6)

1

2

p

q

Vtrack

ξ

FIGURE 5: The particle moves from p to q, which is on the line segment 1-2

2.1 The forward Euler method (Method 1) 7

The velocity Vtrack can be expressed as (V xtrack, V ytrack). Presented now is
an approach for solving for the intersection point based on solving a nonlinear
set of equations. This approach is not necessary for the forward Euler method (a
linear equation can be solved), but this approach can be more easily extended to
the trapezoidal method. Once the parameter value ξ is obtained by this method,
both the location and velocity at the intersection point q can be calculated. These
are given by

xq = ξ(x1 − x2) + x2 , and
(7)

Vq = ξ(V1 −V2) + V2.

The time along this path segment spent is

4t = ‖Lpq‖ / ‖Vtrackp‖ . (8)

If the value of 4t is larger than the remaining available time, δt, for this
tracking, then the location of q, x′q, is recalculated according to (9),

x′q = xp + (xq − xp)
δt

4t
, (9)

and the velocity of q is obtained using the interpolation based on (9).
For a tetrahedral mesh on a 3-D domain, the particle ends on a triangular face.

The coordinates of vertices 1, 2, 3, and of the particle are represented by a tuple
(x, y, z) with subscripts 1, 2, 3, and p, respectively. On the face, the location and
velocity of the target point q are written as the two equations

xq = N1 · x1 + N2 · x2 + (1−N1 −N2) · x3
(10)

Vq = N1 ·V1 + N2 ·V2 + (1−N1 −N2) ·V3 ,

where N1 and N2 are the two independent variables in the 3-D natural coordinate
system and must be within [−1, 1]. Similarly as for the 2-D case, the formulation
based on

‖xq − xp‖
‖Vtrackp‖

=
xq − xp

Vx
=

yq − yp

Vy
(11)

is aimed to extend to Method 2, the trapezoidal method described in the next
section. N1 and N2 can be determined by using the Newton-Raphson method to
solve the following equations obtained from (11) and (10):

f(N1, N2) = [N1(x1 − x3) + N2(x2 − x3) + x3 − xp] · ‖Vtrackp‖ −
‖N1(x1 − x3) + N2(x2 − x3) + x3 − xp‖ · V xtrackp

= 0 , and
(12)

g(N1, N2) = [N1(y1 − y3) + N2(y2 − y3) + y3 − yp] · ‖Vtrackp‖ −
‖N1(x1 − x3) + N2(x2 − x3) + x3 − xp‖ · V ytrackp

= 0 .

8 2 THE IN-ELEMENT PARTICLE TRACKING METHOD

Once N1 and N2 are obtained, both the location and velocity of q can be cal-
culated with (10). The simulation time elapsed along this particle tracking path
is calculated with (8). As with the 2-D case, the location of q is calculated with
(9) if the particle finishes tracking at this time-step. The velocity is interpolated
based on the new location of q.

2.2 The implicit trapezoidal method (Method 2)

2.2.1 The determination of the intersection edge/face for an element

The determination of the target edge is the same as Method 1 except the definition
of D is modified to

D = k̂ · Lp2 ×
Vtrackp + Vtrack2

2
(13)

for the 2-D mesh, and

D1 =
Vtrackp + VtrackA

2
· (LpA × LpB)

(14)
D2 =

Vtrackp + VtrackB

2
· (LpA × LpB)

for the 3-D mesh. To determine whether the particle’s tracking direction will be
above, on, or below the plane, both D1 and D2 are required to be greater than,
equal to, or less than zero, respectively.

2.2.2 Calculation of the particle destination

The procedure to derive the equations for calculating particle destination is the
same as Method 1 except the equations solved by the Newton-Raphson method
for ξ on the 2-D mesh are defined as

f(ξ) =
1
2

(ξ(x1 − x2) + x2 − xp) ‖ξ(Vtrack1 −Vtrack2) + Vtrackp + Vtrack2‖

−1
2

√
ξ2L2

21 + 2ξL21 · Lp2 + L2
p2

·
[
ξ(V xtrack1 − V xtrack2) + V xtrackp + V xtrack2

]

= 0 . (15)

The simulation time spent on this path segment is modified from (8) to

4t = 2‖Lpq‖ / ‖ξ(Vtrack1 −Vtrack2) + Vtrackp + Vtrack2‖ . (16)

For the 3-D case, N1 and N2 are obtained by using the Newton-Raphson method
to solve the following equations:

f(N1, N2) =
1
2

[N1(x1 − x3) + N2(x2 − x3) + x3 − xp] ·

9

‖N1(Vtrack1 −Vtrack3) + N2(Vtrack2 −Vtrack3) + Vtrack3 + Vtrackp‖
−1

2
‖N1(x1 − x3) + N2(x2 − x3) + x3 − xp‖ · [N1(V xtrack1 − V xtrack3)

+N2(V xtrack2 − V xtrack3) + V xtrack3 + V xtrackp

]

= 0
(17)

g(N1, N2) =
1
2

[N1(y1 − y3) + N2(y2 − y3) + y3 − yp] ·
‖N1(Vtrack1 −Vtrack3) + N2(Vtrack2 −Vtrack3) + Vtrack3 + Vtrackp‖
−1

2
‖N1(x1 − x3) + N2(x2 − x3) + x3 − xp‖ · [N1(V ytrack1 − V ytrack3)

+N2(V ytrack2 − V ytrack3) + V ytrack3 + V ytrackp

]

= 0 .

The simulation time spent on this path segment is modified from (8) to

4t = 2‖Lpq‖ / ‖N1(Vtrack1−Vtrack3)+N2(Vtrack2−Vtrack3)+Vtrack3 +Vtrackp‖ .
(18)

For the remaining situations, the calculation is the same as in Method 1.

3 The Parallel In-Element Framework

From a parallel computing perspective, the advantage of the in-element tracking
framework is that only local, or in-element, simulation data are required to com-
pute the trajectories of particles at each time-step. Thus, in a parallel computing
environment, assigning particles to the computational elements that contain them
requires interprocessor communication [4]. A number of parallel computing is-
sues related to particle tracking applications must be considered. The problem
of maintaining a good combined load balancing with element-based computation
and particle-based computation is considered in [10]. A mesh-independent inter-
face is considered in [11], and the use of an a posteriori error estimator based on
particle tracking methods for adaptive mesh refinement is considered in [12].

Because in-element particle tracking methods are implemented with respect
to element volumes defined by the computational mesh, a natural approach is
to develop a parallel framework based on specifying local, element-based opera-
tions. However, to move particles between elements, the algorithms implemented
in the parallel particle tracking (PT) software require specific information about
mesh partitioning and the coherence of parallel mesh data structures. The PT
algorithm presented is based on the correlated partitioning of the particle sys-
tem and the unstructured element mesh. Particles are partitioned to processors
based on their element location—this approach ensures that the data required for
the following computation (e.g., the Lagrangian step using the particle tracking
methods) involve only data local to a processor. The correspondence between
particles and elements is maintained through explicit references in the element

10 4 A PARTICLE-MESH API

and particle data structures. This correspondence is essential to ensure the cor-
rect reassignment of particles between processors. The reassignment occurs when
particles move between elements owned by a processor and the ghost elements
(elements with shared faces, edges, or vertices that are owned by another proces-
sor) [2, 13]. Algorithm 4 is the implementation of the parallel in-element particle
tracking technique.

Algorithm 4 The parallel in-element particle tracking algorithm

Let Pi be the set of particles on processor i
Set the residual time tr to the time-step size
n ← ∑

i ‖Pi‖
While (n > 0) do

ni ← 0
Foreach (p ∈ Pi) do

Determine the adjacent element M that the particle will pass
through based on velocity rule with Vtrack(x, t +4t)

While (p ∈ Pi and status(p) 6= finish) do
Refine M to the prescribed number of subelements
Track p subelement by subelement until time is exhausted or

intersects the boundary of the element M
Compute tr, velocity, and identify the possible neighbor

element M for next tracking
If tr > 0 do

If owner(M) 6= i do
Queue p and remove p from Pi

ni ← ni + 1
Endif

Elseif tr = 0 do
Update locations and values of p at

current time
status(p) ← finish

Endif
Endwhile

Endfor
n =

∑
i ni

Pack, send and receive messages for each particle
queue, then unpack messages to form new Pi

Endwhile
Update values on each vertex

4 A Particle-Mesh API

The data structure associated with each particle must include previous and cur-
rent locations, user-defined attributes such as a particle’s previous and current

11

velocities/data values, and some additional fields—a pointer to the element that
the particle lies within (or will move to), an integer identifying the edge/face num-
ber that the particle intersects, and a real number managing the bookkeeping of
the residual time remaining while computing the path for the current time-step.
The caching of ghost elements ensures that when the target element found by
the tracking algorithm is owned by another processor, the particle is correctly
moved to that processor. In addition, the assignment of elements is crucial to
successful implementation of the algorithm. To ensure correct execution of the
parallel algorithm, a consistent numbering of vertices, edges, and faces in each
element must be maintained.

A software architecture [4] has been designed to provide support for paral-
lel particle tracking applications on unstructured meshes on high performance
parallel computers, clusters, or networks of workstations. This architecture en-
capsulates the functionality required by most particle tracking applications. A
key feature of this architecture is that it inherently allows for parallel imple-
mentation, assuming that the underlying mesh software has been parallelized.
An API is defined to allow for the easy incorporation of different parallel pro-
gramming environments. Operations provided by the software include particle
object initialization, virtual mesh object initialization, parallel in-element parti-
cle tracking, reallocation of particles (i.e., reallocate particles to processors after
they move to different elements), particle movement, and vertex data value up-
dates. Portability of the underlying message-passing paradigm is achieved by the
use of the MPI message-passing standard [14]. Figure 6 details a section of an
application code illustrating the use of the in-element particle tracking method.

In Figure 6, three objects—the particle object pt data, the mesh object
pt mesh, and the parallel context pt procinfo—are created by calling the three
API functions—PTinit(), PTinit mesh(), and PTinit procinfo(), respectively.
There are three functions designed for users to call to destroy these three objects.
The following six API functions construct the computation of the particle track-
ing algorithm in the time loop. The API routine PTrelocate particles checks
each local particle’s resident element to determine whether the particle will be
moved and to where. If the tracked particle has been determined not to belong
to the current processor, the particle is moved to the nonlocal list from the local
list and reassigned to the associated queue, as shown in Figures 7 and 8.

The function PTgntrak serves as the first sweep of the parallel in-element
particle tracking, which allows for only one element to be traversed. The func-
tion PTnextrak delay is called within a while loop, which means some number
of sweeps calling this function may be included. In this function, each particle
tracks its path element-by-element until it enters a ghost element (meaning it
needs to be shipped to another processor) or its final destination is determined
for this time-step. Therefore, the function PTrelocate particles is called in
this routine in order to reassign the particle to different processors. The embed-
ded message-passing routine PTsend delay is called after PTnextrak delay. As
described, a nonlocal list has been prepared in PTrelocate. The main task of
this function is packing the message for each processor, sending the message to
each processor, and unpacking the received message for each processor to have a
correct local list. When every particle has reached its destination, the function

12 4 A PARTICLE-MESH API

/*** particle object initialization ***/

pt_procinfo = PTinit_procinfo();

pt_data = PTinit();

/*** virtual mesh object initialization ***/

pt_mesh = PTinit_mesh();

while (cur_time < total_time){/* time loop */

if (PTgntrak()){/* 1st sweep tracking */

PTrelocate_particles();/*move to other proc? If yes, where?*/

} /* end if */

/* following sweeps tracking */

while (PTnextrak_delay()){

/* send out the particles and receive the new ones */

PTsend_delay();

} /* end while tracking */

if (! tracking_only){/*** Lagrangian values ***/

/* move to other proc? If yes, where*/

PTcreate_nonlocal_copies();

/* update vtx values */

max_value = PTupdate_vtx_u();

} /* end if vertex value update */

} /* end while time */

/* clean up */

PTfree_list();

PTfree_mesh();

PTfree_procinfo();

FIGURE 6: Code for a simple parallel particle tracking application

PTcreate nonlocal copies is called before updating the vertex values—this step
is required by the Eulerian-Lagrangian methods [15]. This function is designed
to ship the particle back to its original processor to be updated because particles
(vertices) may have traced their paths to processors different from their original
owners. The function PTupdate vtx u simply updates the values of vertices on
the processor that owns them based on the information of the particles. Users
must provide enough information in the user data of the particle to fulfill this
update.

To incorporate different mesh programming environments efficiently, the PT
software uses an abstract particle-mesh interface, specified by an API, to interact
with the parallel mesh software programming environment. This interface is il-
lustrated in Figure 9. The PT software architecture contains the particle tracking
software implementation, which encapsulates the functionality required by most
particle tracking applications. In this way, details of the parallel implementa-
tion are hidden from the application programmer. In addition, a particle API is
provided to allow users to specify methods to create, retrieve, or modify particle
attributes. The gateway between the PT software and the selected mesh pro-
gramming environment (e.g., SUMAA3d), which may include an API to increase
interoperability, is the abstract particle mesh interface (PMI) that has been de-

13

FIGURE 7: An illustration of a the trajectory of a particle requiring it to be
reassigned to a different processor

FIGURE 8: The particle object including a local head and a nonlocal head
double link lists of particles and a set of methods to access them

14 5 EXPERIMENTAL RESULTS

FIGURE 9: The particle tracking software architecture and its interface to an
existing mesh programming environment

veloped [4]. The PMI is implemented as a concise functional interface to allow for
easy incorporation with different mesh programming environments. This set of
functions can be specified by users to provide methods to get/set vertex, element,
and edge attributes. Commonly, only a few lines of code are required to imple-
ment each function, and this coding effort can often be leveraged by API routines
provided by the mesh programming environment. The following is the content
of one of the PMI functions named PMIset part list to tri(), which provides
a method to set/modify the particle list associated with the element as shown
in Figure 10, when SUMAA3d is picked as the mesh programming environment.
The API function RFget tri user data designed in SUMAA3d is the main ac-
cess function between the PT software and the SUMAA3d mesh programming
environment.

void PMIset_part_list_to_tri(PTelm *tri,PTparticle *particle,int w_index)

{ /*@ PMIset_part_list_to_tri - set the particle list to the tri @*/

tri_data *dptr;

#ifdef __SOLID3D

dptr = (tri_data *) RFget_tri_user_data((RFtet *)tri);

#else

dptr = (tri_data *) RFget_tri_user_data((RFtriangle *)tri);

#endif

dptr->pt_list = particle;

return;

}

5 Experimental Results

In this section, 2-D and 3-D advection-diffusion transport problems are solved us-
ing the developed parallel in-element particle tracking method in conjunction with

15

FIGURE 10: The particle-mesh mapping

the SUMAA3d scalable unstructured mesh programming environment. Only a
few lines of code are required in each of the particle API and mesh API functions.
A 2-D rotating velocity field is adopted to demonstrate the capability of the in-
element particle tracking algorithm interfacing with ODE solvers with different
orders of accuracy. In addition, the 3-D rotation cone problem, involving pure
advection mechanism, is solved to demonstrate the accuracy and performance
improved by the parallel implementation.

Test of ODE Solvers

This subsection presents experimental results from testing the parallel in-
element approach with two different ODE solvers. The test problem used is
derived from the advection of a sharp peaked density cone on a 2-D domain. A
2-D forward particle tracking is performed under the following flow field:

u = (Vx, Vy) = (−ωy, ωx) = (
−πy

500
,

πx

500
) (19)

where Vx and Vy are the velocity components in the x- and y-directions, re-
spectively. A region of [-3000, 3000]×[-3000,3000] is discretized into triangular
elements. The fictitious particles to be forward tracked are originally on vertices
in the domain. After a tracking time period of 500, the location of the fictitious
particles can be analytically determined by using the relationship in (20) with
the time integration from 0 to 500.

x− xo =
∫ 500

0
u(x, t)dt (20)

16 5 EXPERIMENTAL RESULTS

X

Y

-3000 -2000 -1000 0 1000 2000 3000
-3000

-2000

-1000

0

1000

2000

3000

FIGURE 11: Hedgehog plot of 2-D rotating velocity field

Figure 11 demonstrates the counterclockwise velocity field in the domain. In
Figure 12, the particle tracking results using two solvers (Method 1 and Method 2
described in Section 2) show that the approximated implicit trapezoidal method
(Method 2) matches much better with the analytical solution than the forward
Euler method (Method 1) for the four randomly picked streamlines. This result
illustrates the correctness of the implementation of the in-element parallel particle
tracking algorithm when interfacing with different solvers.

Accuracy and Performance

In this subsection, a 3-D pure advection transport problem is solved using the
developed parallel in-element PT software in conjunction with the SUMAA3d
scalable unstructured mesh programming environment (written in C) and the
parallel FEMWATER program (written in FORTRAN). Only a few lines of cod-
ing are required in each of the particle API and mesh API functions. Because
these two applications solve the same problem, the particle API functions as-
sociated with each of them are defined to access the particle attributes in the
same way. However, the PMI functions are built differently to access mesh data
created by different programming languages.

For example, in SUMAA3d, the object RFadaptive mesh provides all of the
information, including edge neighbors and face neighbors, that is required by the
PT software. In parallel FEMWATER, a virtual particle object and mesh object

17

X

Y

-3000 -2000 -1000 0 1000 2000 3000
-3000

-2000

-1000

0

1000

2000

3000

Method 1

Method 2

Exact

FIGURE 12: Comparison of ODE solutions obtained by Methods 1 and 2

are created in the FORTRAN main program, but they are built in the library
function PTinit and in the function PTfw mesh to access the FORTRAN-style
mesh data structures. Moreover, the user data associated with elements and as-
sociated with vertices need to be defined to build an explicit reference between
particles and elements and access user data—concentration, the Lagrangian con-
centration, and three components of velocity—allocated in the FORTRAN code.
This extra work is required with the application code FEMWATER and not with
the SUMAA3d programming environment. The following is the content of the
PMI function PMIget part list from tri when used with SUMAA3d.

PTparticle *PMIget_part_list_from_tri(void *mesh, PTelm *tri)

{ /*@ PMIget_part_list_from_tri - get the particle

list from the tri. in conjunction with SUMAA3d.

@*/

tri_data *dptr;

#ifdef __SOLID3D

dptr = (tri_data *) RFget_tri_user_data((RFtet *)tri);

#else

dptr = (tri_data *) RFget_tri_user_data((RFtriangle *)tri);

#endif

return (PTparticle *)(dptr->pt_list);

}

The following code fragment is used with the parallel application code FEMWA-
TER.

18 6 CONCLUSION AND FUTURE WORK

PTparticle *PMIget_part_list_from_tri(void *mesh,PTelm *tri)

{ /*@ PMIget_part_list_from_tri - get the particle list from

the tri. in conjunction with parallel FEMWATER.

@*/

tri_data *dptr;

dptr = ((fw_mesh_t *)mesh)->tri_user_data+(

(int *)tri-((fw_mesh_t *)mesh)->ie) / 9;

return (PTparticle *)(dptr->pt_list);

}

In all, the effort required to construct these PMI functions is relatively small.
Maintaining the PT software is much easier than maintaining both SUMAA3d
and parallel FEMWATER. The simulation result from the parallel in-element
tracking algorithm using the SUMAA3d mesh programming environment is pre-
sented in Figure 13. The maximum absolute pointwise error of this simulation is
less than 1 percent. The incorporated FEMWATER program was run on the U.S.
Army Engineer Research and Development Center Major Shared Resource Cen-
ter’s (ERDC MSRC’s) Compaq SC45 system (128 nodes, 512 processors, 1,000
MHz CPUs)—a distributed memory parallel computer based on the Alpha 21264
processor. Figure 14 depicts the wall-clock time spent in particle tracking as a
function of the number of processors varying from 2 to 256 using log-log scales.
As expected, the slope of the log-log plot in Figure 14 (i.e., speedup in tracking)
is close to but less than 1.

0

1000

2000

3000

Z

-3000
-2000

-1000
0

1000
2000

3000

X

-3000
-2000

-1000
0

1000
2000

3000

Y

X Y

Z

1
0.8
0.6
0.4
0.2

Initial Distribution

0

1000

2000

3000

Z

-3000
-2000

-1000
0

1000
2000

3000

X

-3000
-2000

-1000
0

1000
2000

3000

Y

X Y

Z

1
0.8
0.6
0.4
0.2

Simulation Result at Time 500

FIGURE 13: Initial distribution (left) and simulation result at time 500 (right)
for the 3-D rotation cone problem

6 Conclusion and Future Work

As demonstrated in the preceding section, the building blocks for parallel par-
ticle tracking methods in conjunction with different programming environments

19

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

Total Tracking Time (log log plot)

no. of processors

C
PU

 ti
m

e
(s

ec
)

FIGURE 14: The performance of the particle tracking benchmark as a function
of the number of processors on the Compaq SC45 system

are short and straightforward. The main reason is that the parallelization is em-
bedded in the PT software, and the PT software provides a carefully designed
mesh-particle interface. Application programs, such as ADH [16], pWASH123D
[17], ADCIRC [18], pNFS [19], etc., are expected to benefit from the development
of the PT software.

The development of agent-based computing framework is an ongoing task to
support an environment in which the interactions between agents occur based
on their behavior rules. Large-scale agent based simulations are expected to
run on a large number of processors on ERDC MSRC machines for performance
analysis such as scalability and detailed profiling. In the future, this API may
be redefined using more advanced language capabilities, and a parallel particle
tracking component is expected to be built to be compliant with the Common
Component Architecture Forum (CCA) [20].

Acknowledgments

The tests described and the resulting data presented herein, unless otherwise
noted, were obtained from research conducted under the sponsorship of the U.S.
Army Districts Walla Walla and Portland and the System-Wide Water Resources
Program (SWWRP), a U.S. Army Corps of Engineers research and development
initiative. This work was also supported in part by a grant of computer time
from the Department of Defense High Performance Computing Modernization
Program at the U.S. Army Engineer Research and Development Center Major
Shared Resource Center, Information Technology Laboratory, Vicksburg, Missis-
sippi.

20 REFERENCES

References

[1] R. A. Goodwin, J. M. Nestler, J. J. Anderson, L. J. Weber, and D. P. Loucks.
Decoding 3-D movement rules of fish for forecasting using a coupled Eulerian-
Lagrangian-Agent framework. Journal of Ecological Modeling, 2005. in press.

[2] Lori Freitag, Mark Jones, Carl Ollivier-Gooch, and Paul Plassmann.
SUMAA3d Web page. http://www.mcs.anl.gov/sumaa3d/, Mathematics
and Computer Science Division, Argonne National Laboratory, 1997.

[3] F. Tracy. Parallelization of finite element method flow and transport ground-
water computations. In Proceedings of the Southern Conference on Comput-
ing, The University of Southern Mississippi, MS, Oct. 26–28, 2000.

[4] J-R. C. Cheng. Parallel Particle Tracking Algorithms and Software for Appli-
cations in Scientific Computing. PhD thesis, Department of Computer Sci-
ence and Engineering, The Pennsylvania State University, University Park,
PA, USA, 2002.

[5] David A. Lane. Scientific visualization of large-scale unsteady fluid flows.
In Scientific Visualization Surveys, Methodologies and Techiniques, pages
125–145, Los Alamitos, CA, 1996. IEEE Computer Society Press.

[6] P. Buning. Numerical algorithms in CFD post-processing, computer graphics
and flow visualization in computational fluid dynamics, 1989. von Karman
Institute for Fluid Dynamics Lecture Series 1989-07.

[7] P. Bunning. Sources of error in the graphical analysis of CFD results. Journal
of Scientific Computing, 3(2):149–164, 1988.

[8] F. Post and T. van Walsum. Fluid flow visualization. In G. Nielson H. Hagen,
H. Mueller, editor, Focus on Scientific Visualization, pages 1–40. Springer,
Berlin, 1993.

[9] H.-P. Cheng, J.-R. Cheng, and G. T. Yeh. A particle tracking technique for
the Lagrangian-Eulerian finite-element method in multi-dimensions. Inter-
national Journal for Numerical Methods in Engineering, 39(7):1115–1136,
1996.

[10] Jing-Ru C. Cheng and Paul E. Plassmann. A parallel particle tracking
framework for applications in scientific computing. The Journal of Super-
computing, 28:149–164, 2004.

[11] Jing-Ru C. Cheng and Paul E. Plassmann. A software architecture for par-
allel particle tracking algorithms. In H.R. Arabnia and Y. Mun, editors,
Proceedings of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’03), volume II, pages 656–661.
CSREA Press, Las Vegas, Nevada, USA, June 23-26, 2003 2003.

[12] Jing-Ru C. Cheng and Paul E. Plassmann. An a posteriori error estima-
tor for adaptive mesh refinement using parallel in-element particle track-
ing methods. In José M.L.M. Palma, Jack Dongarra, Vicente Hernández,

REFERENCES 21

and A. Augusto Sousa, editors, High Performance Computing for Computa-
tional Science—VECPAR 2002, volume 2565 of Lecture Notes in Computer
Science, pages 94–107. Springer-Verlag, 2003.

[13] Mark T. Jones and Paul E. Plassmann. Computational results for parallel
unstructured mesh computations. Computing Systems in Engineering, 5(4–
6):297–309, 1994.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel
Computing, 22:789–828, 1996. MCS-P567-0296.

[15] J.-R. Cheng, H.-P. Cheng, and G. T. Yeh. A Lagrangian-Eulerian method
with adaptively local zooming and peak/valley capturing approach to
solve two-dimensional advection-diffusion transport equations. International
Journal for Numerical Methods in Engineering, 39(6):987–1016, 1996.

[16] Kimberlie Staheli, Joseph H. Schmidt, and Spencer Swift. Guidelines for
solving groundwater problems with ADH. manuscript, January 1998.

[17] J.-R. C. Cheng, R. M. Hunter, H.-P. Cheng, and D. R. Richards. A parallel
software development for watershed simulations. In Computational Science
— ICCS 2005, The Springer Verlag Lecture Notes in Computer Science
(LNCS 3514) Series, pages 460–468. Springer, 2005. Best Paper Award.

[18] ADCIRC Development Group. Advanced Circulation Model (ADCIRC)Web
page. http://www.nd.edu/∼adcirc/.

[19] J.-R. C. Cheng, R. M. Hunter, P. McAllister, and D. R. Richards. A software
framework for parallel agent-based applications. In SIAM Conf. on Parallel
Processing for Scientific Computing, San Francisco, CA, Feb. 22-24, 2006.

[20] DOE Laboratories and DOE-supported Universities. CCA Forum.
http://www.acl.lanl.gov/cca/.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
February 2006

2. REPORT TYPE
Final report

3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Mesh-Independent Methods for Agent Movement

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Jing-Ru C. Cheng

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army Engineer Research and Development Center
Information Technology Laboratory
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

ERDC/ITL MP-06-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

U.S. Army Corps of Engineers
Washington, DC 20314-1000

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Efficient and accurate methods are needed to move agents (particles with behavior rules) through their environments. To support
such applications, this paper presents a compact software architecture that can be used to interface parallel particle tracking software
to computational mesh management systems. The in-element particle tracking framework supported by this software architecture is
presented in detail. This framework supports most particle tracking applications. The use of this parallel software architecture is
illustrated through the implementation of two differential equation solvers, the forward Euler method and an implicit trapezoidal
method, on a distributed, unstructured, computational mesh. A design goal of this software effort has been to interface to software
libraries such as Scalable Unstructured Mesh Algorithms and Applications (SUMAA3d) in addition to application codes (e.g.,
FEMWATER). This goal is achieved through a software architecture that specifies a lightweight functional interface that maintains
the full functionality required by particle-mesh methods. The use of this approach in parallel programming environments written in C
and Fortran is demonstrated.

15. SUBJECT TERMS
Agent-based simulation
Application programming interface

Individual-based simulation
Parallel computing
Particle tracking

Scientific computing SWWRP
Software Architecture
System-Wide Water Resources Program

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED 26
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	ABSTRACT:
	Contents
	Preface
	1 Introduction
	2 The In-Element Particle Tracking Method
	2.1 The forward Euler method (Method 1)
	2.1.1 The determination of the intersection edge/face for an element
	2.1.2 Calculation of the particle destination

	2.2 The implicit trapezoidal method (Method 2)
	2.2.1 The determination of the intersection edge/face for an element
	2.2.2 Calculation of the particle destination

	3 The Parallel In-Element Framework
	4 A Particle-Mesh API
	5 Experimental Results
	6 Conclusion and Future Work
	Acknowledgments
	References
	SF 298

